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1. Introduction 

In quantitative linguistics, recently a new type of methodological resource has 

become part of the empiricist’s toolkit: classification trees and random 

forests. Particularly in the study of variation phenomena, certainly a very 

active area of linguistic research, trees and random forests have come to be 

used in addition to logistic regression modeling (Tagliamonte & Baayen 

2012, Wiechmann & Kerz 2013). One of the selling points of classification 

trees and random forests is that they are supposedly better able to tackle 

certain situations where regression modeling becomes problematic due to the 

structure of the data. This is the case when the predictor variables are strongly 

correlated and/or when these variables are involved in complex interactions. 

In the latter case, the results of logistic regression are hard to interpret, while 

tree models may offer a more intuitive illustration of the results (cf. Strobl et 

al. 2009a: 325, Tagliamonte & Baayen 2012: 164).    

 This paper offers an introduction to these methods and aims at 

demonstrating and evaluating the new methodological resource by applying it 

to a dataset which is characterized by a complex interaction of the predictor 

variables. The case study is an analysis of the word-formation process of 
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clipping, in particular the choice between back- and fore-clipping, based on 

data provided by Berg (2011).       

 The structure of the paper is as follows: In section 2 the phenomenon 

and the data sample are presented. Section 3 discusses a logistic regression 

analysis of the data conducted by Berg (2011). In section 4 classification trees 

and random forests are applied to the clipping sample. Section 5 discusses the 

results and evaluates the method. 

2. The phenomenon: backclipping vs. foreclipping  

The case study which I use to illustrate the application of classification trees 

and random forests deals with the word-formation process of clipping. More 

specifically, I use data by Berg (2011), who investigates the possible 

predictability of the choice between fore- and backclipping in English. The 

sample consists of 955 instances of clipping collected from dictionaries and 

other published sources (see Berg 2011: 4). The two clipping variants are 

illustrated by the following examples.1 

 

(1)  a. technology > tech                                                

b. raccoon > coon  

 

In (1a) final material of the source word is omitted, presenting an instance of 

backlipping, while in (1b) initial material of the source word is omitted, which 

thus instantiates the process of fore-clipping. The question to be empirically 

addressed is which factors motivate the choice between the two clipping 

variants. Berg (2011) identifies three possible predictor variables, viz. the 

lexical class, the length and the stress pattern of the source word. These 

variables are briefly illustrated in the following, along with the possible 

values they can take on: 

 

Lexical class:  whether the unclipped source word is a proper or a common 

noun. Values: proper noun / common noun           

    

 (2)  a.  Kathryn > Kath  

b. caravan > van          

 

                                                 
1 All examples in this paper are taken from Berg (2011). 
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Stress pattern: whether the source word bears stress on the initial syllable    

Values: word-initial stress vs. non-word-initial stress     

              

 (3)  a. business > biz        

  b.  racoon > coon               

 

Length of source word: length of the source word in number of syllables 

Values: a number ranging from 2-6, denoting the number of syllables  

 

 (4)  a. Albert > Al         

  b.   rehabilitation > rehab 

 

Through monofactorial analysis, Berg (2011) finds that all of these variables 

yield an influence on the choice of clipping: Proper nouns show a higher ratio 

of fore-clipping as compared to common nouns. Initially stressed words show 

a stronger preference for back-clipping than those that are not stressed on the 

first syllable. And, with increasing length of the source word, the probability 

of back-clipping decreases.     

 

3. A regression analysis of clipping choice 

 

A more sophisticated analysis of the influences on clipping choice is their 

analysis in a multifactorial regression model, as this method takes into 

account the concurrent influence of the variables. Relying solely on 

monofactorial methods can be problematic, as interactions between the 

variables are not considered and it is not checked whether each of the 

variables yields a truly independent influence. For example, it could be that 

the influence of initial stress disappears, once the variable ‘lexical class’ is 

controlled for, as it is conceivable that proper nouns almost always bear initial 

stress. Berg (2011) conducts a multifactorial logistic regression analysis, the 

results of which are given in Table 1 below. 
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Table 1. Results of a logistic regression analysis for back-clipping versus 

fore-clipping (from Berg 2011: 9)2 

 

One of the prerequisites of regression is that the predictor variables must not 

be strongly correlated. Checking for correlations of the independent variables 

in the present case reveals some interdependence between them: First, in the 

sample initial stress wanes with increasing word length (length in number of 

syllables, arithmetic means of initially-stressed and non-initially stressed 

 or s    initially-stressed = 2.4,    non-initially-stressed = 3.5). Second, proper nouns 

( hich are exclusively first names in Berg’s sample, see Berg 2011  4) are on 

average shorter than common nouns (arithmetic means     proper nouns = 2.5,  

  common nouns = 3.2) and third, proper nouns display a greater likelihood to be 

stressed on the first syllable (ratios of initial stress: proper nouns = 72%, 

common nouns = 55%). I therefore tested for collinearity of the predictors 

calculating the variance inflation factors (VIFs). All variables yield VIFs < 2, 

which indicates that collinearity is not a concern with this model.3 Let us 

turn to an interpretation of the output of the regression analysis. The p-values 

in the rightmost column tell us that all variables yield significant results and 

are also engaged in significant interactions with each other. There is even a 

significant three-way interaction of all three predictors (see bottom row). 

Positive coefficients in the table (second column from the left) indicate a 

preference for back-clipping, negative coefficients a preference for fore-

clipping. The coefficients are also a measure of effect size, the greater the 

deviation from 0, the larger the effect on clipping choice. The odds ratios 

(third column from the left) are an additional measure of effect size, with 

values between 0 and 1 indicating a preference for fore-clipping (the closer to 

0, the stronger), and values above 1 indicating a preference for back-clipping 

                                                 
2  Predicted odds are for back-clipping, thus positive coefficient values indicate a preference for that variant. 

3 I used the vif function of the car package in R (R Development Core Team 2011) which is able to handle   

categorical predictor variables (cf. Hendrickx et al. 2004: Note 4) 
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(the higher the value, the stronger the preference).     

 The main effects’ negative coefficients of lexical status, stress an  

word length indicate that proper nouns, words with non-initial stress and 

longer words have a weaker preference for back-clipping. However, since all 

variables also feature in complex interactions with each other, an 

interpretation of these effects is not straightforward. With the two-way 

interactions an interpretation is still feasible, e.g. the positive coefficient of 

the interaction of lexical status with stress indicates that proper nouns are 

more strongly affected by stress than common nouns. However, since all 

variables are also involved in a three-way interaction, a plotting of the results 

would be required to understand the complex influences of the variables on 

different groups in the sample. Besides, a comparison of the effect size of the 

different variables as given in Table 1 is not informative, as these values are 

influenced by all interactions the variables take part in. In conclusion, since 

there is a complex interaction between the predictor variables, the data seems 

to lend itself well for a test of the advantages of classification trees and 

random forests.  

 

4. Trees and forests of back-clipping vs. fore-clipping 

 

This section will demonstrate the application of classification trees and 

random forests to the clipping data. Similar to logistic regression, these 

methods can be applied to predict a binary choice situation. Classification 

trees employ a recursive partitioning algorithm, which splits the original 

sample into sub-samples on the basis of the independent variables. The 

algorithm tests whether any of the predictor variables is significantly 

associated with the dependent variable (here: clipping type). If yes, the 

variable which exhibits the strongest association is used to create the first 

split, i.e. creates two sub-samples of the data which are maximally 

homogeneous with regards to the response variable. The resultant sub-

samples are then tested again for significant associations with the predictor 

variables. This process continues in an iterative fashion until no further 

significant associations are found (see Breiman et al. 1993). The splits and 

resultant sub-samples are usually displayed in a tree diagram, which gives rise 

to the name of the method.        

 In a first step, I calculated a single classification tree, predicting the 

choice of clipping type on the basis of the variables lexical class, stress 

pattern and length (see above), using the ctree function of the party package 
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in R (R Development Core Team 2011).4 The application resulted in the 

following tree model (see Figure 1 below). 

 

Figure 1. Classification tree of clipping choice using ctree  

 

As described above, the classification tree uses the predictor variables to 

enforce binary splits on the data, thereby creating subsamples. The present 

tree features two splits, resulting in five nodes. The first split (node 1) is 

created by the variable ‘lexical class’ (proper noun: yes/no). It shows that 

with common nouns, the probability is very high that these will be 

backclipped (see node 5), while the probability for back-clipping is lower for 

proper nouns. The fact that the rightmost branch of the tree, which contains 

the common nouns, is not split up any further, illustrates that the influences of 

the other tested variables do not significantly influence clipping in that group. 

In contrast, if we follow the left branch starting at node 1, we see that the 

group of proper nouns is affected by another variable, as evident from the 

further split of that branch (node 2), brought about by the variable stress 

pattern: Initially stressed proper nouns have a significantly higher probability 

for back-clipping (node 4) than those which are not stressed on the initial 

                                                 
4  The ctree function is preferred in situations in which predictor variables of different types are involved, as 

it ensures unbiased variable selection. This applies to the present case, as categorical variables (lexical 

status and stress pattern), as well as a scalar variable (length of the source word) feature in the analysis. 

Furthermore the ctree function features an internal stop-splitting mechanism, therefore no pruning is 

needed in contrast to other tree-growing functions, e.g. rpart. See Strobl et al. (2009b) on different tree-

growing algorithms. 
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syllable (node 3). The fact that the variable 'stress pattern' leads to a split of 

just this one branch of the tree indicates an interaction between the variables 

‘lexical status’ and ‘stress pattern’. The stress pattern of the source word 

matters only when dealing with proper nouns, while it has no significant 

influence on the clipping of common nouns. What is moreover revealed is 

that the variable ‘length of the source  or ’  oes not lea  to splits, thus it 

does not significantly improve the predictive power of the tree. With regard to 

the predictive accuracy of the tree we obtain an index of concordance of 

C=0.752; the tree classifies 85.7% of all data points correctly.5   

 Since the tree is based on only one particular tree-growing algorithm, it 

may be useful to grow a second tree for comparative purposes, using another 

algorithm, the rpart function. Unlike ctree, rpart does not feature an internal 

stop mechanism. It therefore calculates a maximal tree. This tree can then be 

cut back (‘prune ’) until only significant splits remain. This  as  one in the  

present case using pruning methods based on cross-validation following 

Everitt & Hothorn (2010: 161-175). The resultant tree is illustrated below (see 

Figure 2). 

Figure 2. Classification tree of clipping choice using rpart  

 

 

                                                 
5  The index of concordance C is a measure of the predictive accuracy of statistical models. It ranges from 0 

to 1, with values closer to 1 denoting a high accuracy of the model. 
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As is immediately obvious, the tree contains more splits, as it also considers 

the length of the source word as a splitting variable.6 In fact this variable 

produces two extra splits, as compared to the tree arrived at through ctree. It 

produces separate terminal nodes for all source words longer than three 

syllables (node 3), for mono- and disyllabic words, and for three-syllabic ones 

(node 4). The likelihood of back-clipping decreases in that order. The fact that 

the variable ‘length of the source  or ’ imposes a split on solely the leftmost 

branch of the tree, but does not affect the other two branches, is evidence for 

an interaction of this variable with the other two predictors. Since it affects 

solely those data points which are proper nouns which are initially stressed, it 

illustrates a three-way interaction between the predictor variables. Thus, the 

rpart tree features an even more complex interaction structure than the first 

tree, as the two variables stress pattern, as well as length of the source word, 

influence solely sub-groups in the data. Besides, in featuring more splits, the 

rpart tree yields more information than the first tree. Its predictive accuracy is 

slightly higher than the one of the first tree with 86.4% correct predictions 

(C=0.755).          

 The tree brings out an important insight on clipping as a word-

formation process: While proper nouns are subject to different influences 

which affect the choice between back- and fore-clipping, this is not the case 

with common nouns which almost uniformly pick back-clipping (cf. Berg 

2011).          

 Now that we know which variables yield a statistically significant 

influence on the choice between back- and fore-clipping, a further important 

piece of information would be the effect size of the predictor variables. Effect 

size is a measure of the strength of influence of an independent variable on 

the dependent variable. In logistic regression, common effect size measures 

are the coefficient values or the odds ratios of the individual variables (see 

Table 1 above, for a detailed discussion see Pampel 2000). However, with 

classification trees, effect sizes beyond the order of splits in the tree are 

usually not reported (cf. Tagliamonte & Baayen 2012, Wiechmann & Kerz 

2013). Recall that the order of splits is determined by the strength of 

association between dependent and independent variables (see above). As a 

further measure of effect size, I suggest calculating the effect of the individual 

splits on the response variable. Since the independent variables are used to 

create binary splits which divide the original sample into sub-samples, an 

obvious way to measure the strength of a particular effect, manifested through 

                                                 
6   Remember that rpart may overestimate the significance of scalar variables (cf. Note 5). 
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a node, would be to calculate the difference in back-clipping ratios between 

the two groups. The corresponding equation thus reads δ = μ1- μ2 (μ1 and μ2 

denote the backclipping ratios of the two resultant sub-samples). δ may take 

on values between (-1) and (+1); values close to (+1) denote a strong effect 

towards back-clipping and values close to (-1) a strong effect towards fore-

clipping. If  e calculate δ for the no es in the t o trees calculate  for the 

data, we obtain the following results, as shown in Table 2. 

 

Tree 1 (ctree) δ-value Tree 2 (rpart) δ-value 

Node 1 (lexical status)   

proper noun = yes 

 

–0.173 Node 1 (lexical status)       

proper noun = yes 

 

–0.173 

Node 2 (initial stress)     

initial stress = yes 
0.403 Node 2 (initial stress)           

initial stress = yes 
0.403 

  Node 3 (length of source 

word) >3.5 syllables                      

length > 3.5 

 

0.168 

  Node 4 (length of source 

word) <2.5 syllables                      

length > 2.5 

 

–0.148 

 

Table 2. δ -values of nodes in the two trees for modeling clipping type  

 

The results obtained show that it is node 2 and thereby the variable stress 

pattern that causes the split which differentiates most strongly between 

clipping types. The δ-value of 0.403 informs us that initially stressed source 

words have a ratio of back-clipping which is 40.3% higher than the ratio of 

non-initially stressed source words. Note, however, that this effect holds only 

for the group of proper nouns, as the relevant split is the second one of the 

tree, affecting only the branch containing the subsample of proper nouns. The 

negative value of node 1 (–0.173) yields the information that proper nouns 

have a back-clipping ratio which is 17.3% lower than that of common nouns. 

Nodes 3 and 4 illustrate the effect of source word length.    

 The δ-values denote how strong the effects of the different splits of the 

tree are and thereby indicate the different effect sizes of the corresponding 

variables. However, these values cannot be used for a global comparison of 

effect size, as some nodes only affect subsamples in the data and these effects 

differ from the potential effects of relevant variables on the overall sample. 

To illustrate that, we may compare the effect of the variable initial stress on 

the overall sample to its effect on the subsample of proper nouns: If initial 

stress  as use  for the first split, thus on the entire sample, the δ-value would 

be solely 0.165, as compared to 0.403 when applied to solely proper nouns, as 
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in the trees calculated. In evaluating effect size, it is therefore a good idea to 

take into account two pieces of information: the order of splits as an indicator 

of global effect size and the δ-values of individual nodes indicating strength 

of effect on subsamples in the data.     

The calculation of the two trees naturally raises the question of whether 

the more detailed tree based on the rpart algorithm is really justified, or 

whether the more parsimonious ctree tree is more accurate. One way to arrive 

at an answer to this question is to calculate an ensemble of trees, through the 

application of the technique termed 'random forests'. Random forests have the 

advantage that they yield more stable results than individual trees, as they are 

not as sensitive to particular characteristics of the individual sample. With 

single classification trees it can happen that only small distributional changes 

in the sample employed result in very different tree structures, an issue which 

is also known as the instability of single trees (Strobl et al. 2009a). This can 

be a problem since the tree may yield a result for the relation between 

variables which is true of the sample, but not of the population. The reason for 

why classification trees react sensitively to the random variability of the 

sample lies in the hierarchical splitting mechanism underlying their growth, as 

every split influences the further growth of the tree as a whole. If, for 

instance, the first split is chosen because of a non-representative characteristic 

of the sample, it deteriorates the quality of the whole tree (see Strobl et al. 

2009a: 330). Since the essential task of inferential statistics is to license 

statements about the population, this is a potentially serious issue. 

 In order to mitigate that shortcoming, forest methods grow many trees 

over different samples which are created from the original sample and then 

calculate an average over the ensemble of trees. The technique aims at a 

certain diversity of the trees which has been shown to improve the predictive 

power of the forest as a whole (see Strobl et al. 2009a). This diversity is 

implemented through two features: resampling and random selection of 

variabes. First, for every tree of the forest two subsamples are created. One 

random subsample which is used to grow the classification tree (= the 

learning sample), whose validity is then tested against those datapoints which 

were not included (= the test sample). Second, during the growth of the 

individual trees for every possible split only a random subset of all available 

predictor variables is used. In the present case, where we test the influence of 

three predictor variables, for every possible split only two out of three 

variables are tested. Through this random selection of variables even more 

diverse trees are grown (see Strobl et al. 2009a: 333). For the case study of 
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clipping, a random forest consisting of 3,000 trees was grown, testing the 

three predictor variables mentioned above.7   

Since it is usually not feasible to manually inspect and evaluate 3,000 

individual trees, a further calclulation is necessary to assess the importance of 

the individual variables. One way of doing this is through ‘conditional 

permutation’ of the predictor variables (see Strobl et al. 2008, Tagliamonte & 

Baayen 2012: 160-162). This means that the values of potentially important 

variables are randomly altered (permuted). This permutation creates a vector 

of values which has no association with the dependent variable anymore. It is 

then tested how severe the loss in predictive accuracy of the forest is when 

this permuted version of the variable is employed instead of the original one. 

If the permutation results in a considerable loss of predictive power, this is 

indication that we are dealing with an empirically relevant variable which has 

a high importance for the classification of the response variable. Conversely, 

if the model hardly deteriorates through inclusion of the permuted variable, 

the original variable is most likely not very important. Let me exemplify this 

process: With the variable ‘lexical class’, we know that the value ‘common 

noun’ is associated with a high ratio of back-clipping in contrast to the value 

‘proper noun’. Through permutation, the values proper noun/common noun 

are randomly mixed, and a new permuted version of the variable ‘lexical 

class’ is created. Through the random permutation there should no longer be 

an association between back-clipping and the value ‘common noun’. This 

permuted version of the variable ‘lexical class’ is now used to grow trees 

along with the other un-permuted variables and the deterioration in accuracy 

of prediction is calculated. The results of this calculation are presented in the 

barplot below.8 The lengths of the bars indicate the importance of the 

corresponding variables for predicting the choice between back- and fore-

clipping. The dotted line indicates statistical significance, those variables 

whose bars surpass it contribute statistically significantly to the overall 

accuracy of the forest.9 

                                                 
7 The R function cforest of the party package was used as it is better suited for samples with variables of                                                                

different types than the alternative algorithm randomForest (see Strobl et al. 2009b: 17). 

8 The varimp function of the partykit package was used (see Strobl et al. 2008). The employed parameter 

settings were ntree=3000 and mtry = 2, seed set at 147. Several forests were calculated, with varying the 

parameter settings. The rankings of the variables proved to be stable across several runs of the algorithm. 

Results are displayed in Figure 3. 

9 One way to calculate whether a variable contributes significantly to the forest is to compare it to those 

variables whose influence has been shown to be detrimental to overall model performance, which would 

shows as a negative vector in the barplot. The lowest negative value is taken as an absolute value to 

which the positive contributions are compared. Only those variables which surpass this value are 
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Figure 3. Variable importance (random forest for clipping data) 

 

The results show that the three tested variables significantly influence the 

choice between the two clipping types. Comparing their importance shows 

that lexical status, as well as the stress pattern of the source word yield 

important influences on the prediction of clipping type, with the latter being 

the most important variable. The length of the source word is the variable 

which is least important.         

 In informing us about the statistical significance and relative 

importance of the three variables the calculation also answers the question 

which of the two trees reported above does better justice to the structure in the 

data: It is the more elaborate rpart tree, as it uses the variable 'length of the 

source word' to create splits, whose significance is confirmed by the 

application of random forests. Since the variable is however of only lesser 

importance, also the ctree tree model is acceptable.10   

 Overall, the results for variable importance mirror the effect sizes of the 

individual nodes brought about by the respective variables: The stress pattern 

of the source word is the variable which brings about the node with the largest 

δ-value and it is also the one which has the greatest importance for clipping 

                                                                                                                                                    
considered to contribute significantly to the forest (see Shih 2011, Strobl et al. 2009a: 342). In the present 

case, however, there was no variable which yielded a negative importance score. Therefore I introduced a 

binary random variable in order to simulate a variable which has no relation with the dependent one in 

order to produce such a negative importance score.  

10 The minor importance of the variable ‘length of the source  or ’ is also reflecte  in a similar predictive 

accuracy of the two trees 
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classification as a whole (see Table 2 and Figure 3). Note however, that the 

t o values  o not measure the same thing. While the δ-value denotes the 

effect of a certain split, thus the effect size of a variable on a certain 

subsample in the data, variable importance denotes the overall contribution to 

pre ictive accuracy. A variable may thus have a large δ-value in strongly 

affecting the distribution of certain datapoints, but it may be an overall 

unimportant one, if it is active only in a small subset of the data. Often 

however, as is also the case here, variables score high on both dimensions. 

 Finally, the random forest can also be used to predict the values of the 

independent variable. This is arrived at through a ‘voting’ system, where for 

each datapoint the outputs of all individual trees are calculated. The value 

which receives the most votes is the output of the forest as a whole. This 

‘voting’ technique results in a pre ictive accuracy of C=0.81 and 87.8% 

correctly classified data points. These values represent an improvement over 

the individual trees (see above), hence, the random forest makes slightly 

better predictions than the individual trees. 

 

5. Discussion and conclusion 

Classification trees and random forests were successfully applied to the 

present case study of clipping choice. In the following I will discuss and 

evaluate the application of the methods.     

 One assumption was that the new tools can better handle complex 

interactions between the predictor variables. Above, we saw that with the 

clipping data, logistic regression yielded results which were hard to interpret 

(see Table 1). In contrast, the tree models calculated provide a straightforward 

illustration of the interaction effects. Their architecture allows for an easy 

interpretation of possible interactions, as we simply have to compare the 

different branches of the tree: If a certain variable is used to create splits in 

one branch of the tree, but not another, it influences only a subsample, thus 

interacts with the variable which created the branch. In the present case study, 

the trees brought to light an interesting result on the word-formation process 

of clipping: While the choice between clipping types is subject to different 

influences in the case of proper nouns, these variables do not significantly 

influence common nouns, which are almost uniformly backclipped. It needs 

to be mentioned, however, that with very elaborate trees which are based on a 

large number of predictor variables, the interpretation of a classification tree 

could also become more complex than in the present case (cf. Strobl et al. 

2009a: 328-329).          
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 I furthermore calculate  a ‘ran om forest’  hich is an ensemble of 

classification trees. Since single trees are not always reliable, as they are 

sensitive to characteristics of the sample, random forests calculate which 

variables have a significant impact on the dependent variable with varying 

samples. Moreover, random forests provide the user with further measures of 

variable importance (see Figure 3). Lastly, also the forest can be understood 

as a model which predicts the values of the dependent variable. Thus, in the 

present case, instea  of relying on one tree,  e can also ‘ask’ the forest to 

predict the choice between the two clipping variants and, as we have seen, the 

predictive accuracy of the random forest is higher than that of the individual 

trees.           

 As the random forests also allow for predicting the values of the 

dependent variable, it seems that it can be treated like other statistical models, 

for example logistic regression. However, there are important differences 

between these two methods: First, every tree in the forest is based on a 

random choice of variables, which is calculated on the basis of a random 

sample (see above). Therefore the results of a random forest application vary 

with every single calculation (see Strobl et al. 2009, Shih 2011). Thus, at least 

theoretically, the results for importance and statistical significance of the 

tested variables are not stable across different runs of the random forests 

function. This characteristic obviously has a negative effect on the test-retest 

reliability of the method. In actual practice, however, this characteristic will 

not constitute a major problem in most cases, due to the fact that when a large 

ensemble of trees is grown, there should be a regression towards the mean of 

the variable values. Thus the actual differences between two different 

calculations will only be slight, given the forests are large enough. However, 

this characteristic still distinguishes this method from regression analyses: In 

a regression equation the coefficients and measures of variable importance are 

invariable and will be the same across any two calculations, as long as we 

apply the same regression function and follow the same procedures during 

model fitting.11 With random forests the user is advised to keep the potential 

computational instability in mind, and to always calculate several random 
                                                 
11 In actual practice, the distinction between the two techniques may not bet that sharp, as during model 

fitting very often more than one model is calculated, for instance if bootstrapping is applied, during which 

often more than 100 different models are calculated based on different samples (see e.g. Baayen 2008). This 

would then be quite comparable to a random forest in also being a sort of ensemble technique. It would 

therefore be more adequate to compare a single regression model to one particular tree and a random forest to 

separate regression models over many different sub-samples. Thus the difference between the two methods 

lies more in their application than in their mathematical characteristics. Nevertheless, the aim of a regression 

model is always to arrive at one regression equation, which is not the case with random forests.   
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forests to verify that the results are stable across a number of runs (Shih 2011: 

4). 
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